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ABSTRACT ,<As" 
The , t o t a l  emissivity of water vapor and the\ re la t ive  

L 
m 

energy dis t r ibut ions i n  various broad-band spec t ra l  regions 1 
have been calculated from experimental thin-gas spec t ra l  data 

a t  temperatures between 500' and 220OoK and opt ical  path- 

-u 

lengths between 0.1 and 10,000 cmeatm. The calculation 

provides an upper l i m i t  t o  the emission which should be use- 

f u l  i n  heat t ransfer  calculations and the design of thermal 

protection systems. 

iii 
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INTRODUCTION 

The radiative heat t ransfer  from the exhzust. plume t o  the base of 

a launch vehicle which uses hydrogen and oxygen a s  propellants is  due 

almost en t i r e ly  t o  infrared radiation from hot water vapor. 

from water vapor is  a l s o  an important part of the base heating of a 

hydrocarbon-oxygen vehicle. Previous investigations of the emission of 

hot 5 0  have not included the conditions of temperature, pressure, and 

opt ica l  pathlength which a r e  pertinent t o  calculations of radiative 

heating from the plumes of very large vehicles l i k e  the Saturn V o r  

Nova. 

hot water has been i n i t i a t e d  a t  the Space Science Laboratory of General 

Dynamics/Astronautics . 
Astrodynamics Laboratory (R-AIBO-R) of the NASA's Ihrshall Space Flight 

Center. The investigation has as i t s  goal the development of an a b i l i t y  

t o  predict  the t ransfer  from an arbi t rary volume of hot water vapor? under 

a rb i t r a ry  (and nor,-uniform) conditions of temperature and pressure, t o  a 

nearby surface. 

Radiation 

For t h i s  reason an investigation of the radiant emission from 

This investigation is  supported by the Aero- 

The present report is  the f irst  of a se r ies  of reports which w i l l  be 

issued as various steps are  taken toward the goal. This report presents 

an evaluation of the t o t a l  or "engineering" emissivity of a uniform sample 

of water vapor i n  the l i m i t  of very high pressure, where the spec t ra l  

emissivity i s  described by Beer's L a w  with frequency-averaged empirical 

absorption coefficients.  This i s  equivalent t o  the weak l i n e  approximation; 

1 
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the calculation i s  exact a t  very low opt ica l  depths, and provides an 

absolute upper l i m i t  a t  large values of the opt ica l  depth. 

Future reports w i l l  discuss the emissivity of Doppler-broadened %O 

( th i s  is  the l o w  pressure l i m i t  t o  the emissivity) and the emissivity of 

%O when the spec t ra l  l i nes  a re  collision-broadened but not smeared 

enough f o r  the frequency-averaged model t o  be applied a t  large opt ica l  

depths. 

f o r  the collision-broadened case, and experimental work is presently i n  

progress which w i l l  furnish these data. 

Further experimental data, a t  long pathlengths, w i l l  be required 

THEORETICAL DEVELOPMENT 

The spec t ra l  emissivity f o r  radiation from homogeneous gases i n  a 

very narrow frequency range (v t o  u + 8v) along a given l i n e  of s ight  

approaches the value given by 

e(v,T,u) = 1-exp{-uk(v,T)] 

i n  the l i m i t  a s  6v becomes vanishingly small. 

a statement of the well-known Beer-Lambert Law, r e la tes  the emissivity 

e a t  given frequency v ,  temperature T, and opt ica l  depth u, t o  the 

absorption coeff ic ient  k, a function of temperature and frequency fo r  

a par t icu lar  gas. 

spec t ra l  resolution a re  available, the t o t a l  emission may i n  principle 

be calculated by the re la t ion  

Equation (l), which is  

If calculations or measurements of k with suf f ic ien t  

m 

N(T,u) = $(T) [l-exp{-k(v,T)u]] dv 

0 

2 



Here N i s  the emission i n  watts/cm2 and N," is  the Planck blackbody 

radiance function. 

I n  general, however, gaseous spectral  emissivit ies measured with 

even the  highest-resolution spectrometers do not show the variation w i t h  

op t ica l  depth predicted by Eq. (1). 

instrument i s  given by the relat ion 

The emission measured by such an 

N = N,"(T) [1-exp{-k(u,T)u]] T ( V )  dv 
Av 

where T ( V )  is  the spec t ra l  transmission function of the instrument and 

the in tegra l  is  taken over a l l  frequencies t o  which the instrument responds 

a t  a given spectral  se t t ing .  

amounts over a narrow spec t ra l  range a s  one passes from l ine  t o  l i n e  i n  

the spectrum. The non-linear dependence of the emissivity on the absorp- 

t i o n  coefficient often resul ts  in  great deviations of the measured 

emissivit ies from the Beer-Lambert I a w .  For t h i s  reason, considerable 

I n  gaseous emitters k(v) can vary by large 

care must be taken i n  interpolating o r  extrapolating gaseous emission t o  

opt ica l  depths other than those a t  which measurements a re  ava,ilable. 

In  cer ta in  si tuations,  and f o r  specific ends, the use of measured 

spectra t o  compute e and N a t  different opt ical  depths i s  permissible. 

U s e  of E&. (1) w i l l  always provide a n  upper l i m i t  t o  the emission from 

gas samples a t  lengths greater than those of the measured sample. 

more, i f  the measured gas i s  optically thin,  the emission i n  various 

spec t ra l  regions (whose width i s  greater than the resolving power of the 

spectrometer) from gas samples of lesser  op t ica l  depths t h 2 n  the measured 

Further- 
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sample may be calculated exactly. 

is that the peak value of ku within the spectral  in te rva l  under consider- 

a t ion  be small with respect t o  unity. 

op t ica l ly  t h i n  if  the value of the integrated in tens i ty  

rotat ion band, determined from the measured spectrum, is equal t o  the 

value obtained i n  the l i m i t  as u i s  mde very small. 

The requirement fo r  opt ical  thinness 

For prac t ica l  purposes, a gas i s  
* 

of a vibration- 

Another s i tua t ion  pertains when the pressure o r  the temperature 

of the gas i s  high. 

a r e  perturbed by the close proximity of other molecules during col l is ions.  

As a result,2 the spec t ra l  l i ne  emitted because of a par t icular  class of 

t rans i t ions  is  spread over a wider frequency in te rva l  and less intense 

a t  the peak than a t  l o w  pressures. 

a r e  excited which are not excited a t  l o w  temperatures. 

involving these energy levels often give r i s e  t o  emission a t  frequencies 

between the  peaks of low-temperature l ines .  This f i l l ing  i n  of the 

A t  high pressures, the energy levels  of molecules 

A t  high temperatures, energy levels 

Transitions 

"valleys!' i n  the spectrum 

* 
The integrated in tens i ty  

which occurs a t  high pressures and temperatures 

of a band is defined by the re la t ion  

where % is  the contribution of the band i n  question t o  the absorption 

coefficient.  The value of cyb is related t o  the quantum-mechanical 

probabili ty of spontaneous t ransi t ion from an upper t o  a lower energy 

level .  

4 



r'esults i n  the spectral  absorption coefficient 's  being a much l e s s  jagged 

function of frequency and consequently t o  the sa t i s fac t ion  of E Q .  (1) over 

reasonably wide spec t ra l  intervals .  The nearness of the integrated band 

in t ens i t i e s  of the measured emission spectrum t o  the t rue  values a t  very 

low pathlength can again be used as a tes t  f o r  t h i s  behavior. 

conditions of very high pressure, or i n  sol ids  or l iquids,  the emission 

a t  great op t ica l  depths is given exactly by an extrapolation of the resu l t s  

of measured data by means of Eq. (1). More generally, even though the 

pressure or temperature i s  high enough t o  make the measured integrated 

band in tens i ty  the correct value, only extrapolations t o  lower opt ical  

depths a r e  exact; however, the calculations f o r  greater  op t ica l  depths 

do again provide an upper l i m i t  t o  the emission. 

Under 

One i s  normally interested i n  the emission from hot water vapor a t  

the  temperatures produced i n  combustion systems - flames, furnaces, engines, 

and rocket exhausts - which may range Between 500' and 250OOK. 

temperatures most of the energy radiated by a blackbody f a l l s  a t  wave- 

lengths longer than 0.9 microns, o r  a t  wavenumbers below 11,000 cm-l. 

(See Fig. 1) 

vapor tends t o  f a l l  proportionately more a t  longer wavelengths than does 

emission f r o m  a blackbody a t  the  same temperature, and a s  the  opt ica l  

depth increases, the 50 emission approaches tha t  of a blackbody. We 

therefore conclude tha t  w e  may replace the upper l imi t  of integration 

i n  Q. (2) by 11,000 cm'l t o  a very good approximation, thereby avoiding 

having t o  consider the very high-order emission bands of water below 

0.9 p. 

A t  these 

A t  low o r  moderate opt ical  depths, emission from water 

The important bands of 50 i n  t h i s  region a re  the pure rotat ional  

5 
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band, the  6.3-p vibration-rotation fundamental, the 2.7-p fundamental, 

the  1.87-1.1 vibration-rotation overtone-combination, the 1.34-p overtone, 

and the  1.14-p overtone. 

'I'REATWNT OF EXPERIMENTAL DATA 

Spectral  emissivit ies of the vibration-rotation bands and of the 

high-frequency side of the pure rotation band have been measured by 

Ferr is0 and Ludwig 

between 530' and 22OO0K, and a t  optical  depths between 0.8 and 2.34 em- 

atm of 50. 
a t  temperatures greater than 1?OO0K, determined from these data and 

corrected f o r  the temperature dependence of overtone and combination 

bands, generally agree well  with the data obtained by other invest i -  

gators 7-10 using quite different  techniques. 

measured i n  gases produced a t  the exit  of a small rocket motor with a 

contoured nozzle designed t o  produce a uniform exhaust. 

experimental technique may be found i n  previous publications a 2 - 5  

resu l t s  (synthesized from measurements of the various band systems) a re  

shown i n  Fig. 2, where the spec t ra l  emissivity of the exhaust gases i s  

plot ted versus wavenumber. 

2 -6 a t  a t o t a l  pressure of one atm, temperatures 

The integrated intensi t ies  of the vibration-rotation bands, 

The present data were 

Details of the 

Typical 

From the measured emissivity values, one may determine an apparent 
8 

absorption coefficient,  Z, by inverting EQ. (1): 

1 1 Z(V,T) = - a n  - u 1-e (4) 

A t  high temperatures, Z approaches I;, the "true" absorption coefficient 

7 



8 



frequency-averaged over a small interval.  

where the STP values of the apparent integrated in tens i t ies  of the 

vibration-rotation bands (corrected for  the theore t ica l  temperature 

dependence i n  the case of the overtone bands) are tabulated a t  various 

temperatures. Constant values, comparable t o  other measured values, a r e  

a t ta ined  a t  high temperatures. A t  lower temperatures, appreciable self- 

absorption occurs, so tha t  Z # I;. 

i s  the determination of values of the t o t a l  emissivity of water vapor which 

a re  exact a t  low pathlengths and which represent a maximum upper l i m i t  a t  

moderate and long paths. We therefore may use the high-temperature values 

d i r ec t ly  i n  Eq. (2) t o  determine emission from high-temperature water, but 

the law-temperature values require correction. 

This may be seen from Table I, 

The aim of the present investigation 

In  the  case of the vibration-rotation bands, the correction is made 

by use of the expression f o r  the spectral  emissivity of a gas represented 

by the s t a t i s t i c a l =  band model with coilision-broadened l i nes .  

case 

In  th i s  

where a i s  the r a t i o  of the l i n e  half-width t o  the mean l ine  spacing. 

Here both 

pressures of the various constituents of the gas. 

determination of good values of k and a from measured data requires 

measurements on samples of a t  l ea s t  two different  pathlengths a t  the 

and a a re  functions of temperature, wavelength, and partial 

I n  principle,  the 

9 



TABLE I 

APPARENT I N T E W W  INTENSZIES OF 5 0  VIBRATION- 

ROTATION BANDS VS "EMFERATORE 

1000 160 

I200 210 

1500 280 

1800 310 

2200 320 

"best value"* 300 

180 30 20 

190 28.5 22 

180 27 21.5 1.P 

180 26 20 0.9 

* 
From our data and those of other investigators. 
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. 
same temperature, p a r t i a l  pressures, and wavelength. 

purpose of the present NASA-funded study using the long burner.) 

present, however, such data a re  not available, and another approach is  

required. Here the values of a a re  averaged over the band t o  provide an 

"effective" band value, a. a t  small wavenumber intervals  

and of a f o r  the band are  then determined from Eq. (5) and the condition 

tha t  the integrated band in tens i ty  be equal t o  that determined from the 

high-temperature data, i.e., 

(This i s  the 

A t  

The values of k 
aPP 

- 
k (T,u) dv = a 
aPP band 

- -  
Because of the use of a band-averaged a ,  k 

since 

use i n  another in tegra l  relation, Eq. (2), should not lead t o  large errors  

provided t h a t  N:, the blackbody function, varies by less than an order of 

magnitude over the band. 

2.7-p  bands of 5 0 ;  correction of the overtone and combination bands was 

unnecessary. 

t o  those expected f o r  5 0  from theoretical  considerations .,I3 A t  temper- 

a tures  above 150O0K, good values of a cannot be determined from the data 

a t  hand, but they a re  not required for these cases. 

i s  not t r u l y  E. However, 
aPP 

was determined i n  part from an in tegra l  relation, Eq. (6 ) ,  i t s  aPP 

This procedure has been applied t o  the 6.3-11 and 

Values of a ( T )  below 150OoK f o r  the various bands a re  close 

In the case of the pure rotation band, only the high-wavenumber 

s ide of the band has been measured. 

in tens i ty  cannot be simply related t o  a vibrat ional  t rans i t ion  probabili ty 

Moreover, the integrated band 

11 



and therefore has a complex temperature dependence. 

approach has been used here, namely tha t  of specifying the values of k 

by an analyt ical  function which is  determined from theoret ical  considera- 

t ions.  

is  asymmetric, so that no sinlple expression f o r  the rotat ional  energy 

levels  ex is t s .  

the case of a prolate spheroid by Fermer 

molecule" by us. 

A somewhat different  

The calculation i s  complicated by the f a c t  that the 50 molecule 

However, analytical expressions have been developed fo r  

1 and f o r  the "most asymnetric 
6 * 

F'enner's calculation can be expressed a s  

where u = hv/kT, y = hcm/kT,  I3 = (A/m-l), po is  the permanent dipole 

moment of 50, No the  pa r t i c l e  density a t  STP, and A, B and C a r e  the 

three ro ta t iona l  constants of 50. 
1.482, and 

molecule" i s  

For water, p0 = 1.87 debyes, B = 

The expression f o r  the "most asymmetric = 11.6 cm-l. 

3 

1 
2 where 

Penner's expression. Both expressions assume just-overlapping rotational 

= -(A+C) hc/kT and other symbols have the s a m e  meaning a s  i n  

I -  
* 

Penner omits the 

very important a t  

last term, which 

low frequencies . 
accounts f o r  induced emission and is  



. 

l ines .  

ro ta t iona l  band from tha t  due t o  the 603-p, band, the emissivity i n  the 

wing of the rotat ional  band is rather well  described by se t t ing  

We have found tha t  where we can separate the emission due t o  the 

where K is  the asymmetry parameter. 

the emission i s  overestimted by an amount corresponding t o  a s t a t i s t i c a l -  

model value of ; which does not appear unreasonable. We have therefore 

chosen t o  represent the absorption coefficient of the rotat ional  band by 

E q .  (8). Emission from the pure rotation band is  a s ignif icant  f ract ion 

of the t o t a l  a t  low temperatures and a t  very short  pathlengths a t  high 

temperatures; w e  estimate a maximum-possible e r ro r  of f 20 per cent f o r  

the emission i n  the rotat ional  band due solely t o  our use of the analyt- 

i c a l  representation f o r  E. 

Farther i n to  the rotat ional  band, 

msms 

W e  have evaluated Eq. (2) over the range of wavenumbers from 0 t o  

11,000 cm-l, using data prepared i n  the manner described above. 

integration was performed a t  various opt ica l  depths by means of the 

CDC 16OA computer. 

One may define the t o t a l  emissivity by the re la t ion  

The 

The resu l t s  may be expressed i n  a number of ways e 



where Q is  the Stefan-Boltwnann constant. I n  Fig. 3 we show the t o t a l  

emissivity ( in  our upper-limit approximation) of hot water vapor as  a 

function of temperature f o r  parametric values of the opt ica l  depth u. 

(The so l id  curves w e r e  calculated; the dotted curves were graphically 

interpolated from plots  of eT vs u.) 

The frequency dis t r ibut ion of the emission from water vapor changes 

considerably with changes i n  temperature and pathlength. 

show the emission per cm-atm optical  depth a t  very th in  paths from 

water vapor a t  500 K; here approximately half of the emission i s  due 

t o  the  rotat ional  band, and the 2.7-p band is  re la t ive ly  unimportant. 

In Fig. 5 we show the emission for a pathlength of 100 cm-atm of water 

a t  500 K; here the 6.3-p band contributes over two-thirds of the emission, 

though the rotat ional  band i s  s t i l l  important. 

emission per cm'atm from t h i n  water vapor samples a t  2200 K; the 2.7-p 

band assumes considerable importance and the higher-order 1.87- and 

1.34-p bands appear. 

cm-atm of water a t  22OOOK; the  rotational band i s  re la t ive ly  unimportant, 

the 2.7-p band dominates, and the higher-order bands contribute about one- 

fourth of the t o t a l  emission. The changing character of water emission a t  

d i f fe ren t  temperatures and opt ica l  depths i s  wel l - i l lustrated by these 

graphs. 

I n  Fig. 4 w e  

0 

0 

In Fig. 6 we show the 

0 

Finally, i n  Fig. 7, we show the emission from 100 

The f rac t iona l  contribution 'from the spectral  region below a given 

wavenumber vf t o  the t o t a l  emission can be calculated as  

14 
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These data are shown i n  Pigs. 8, 9, and 10 f o r  opt ical  depths of 0.1, 

10, and 1000 cm'atm. The dividing points have been chosen so tha t  the 

d i f fe ren t  spectral  regions correspond approximtely t o  the various 

emission bands of water vapor. The correspondence is not quite exact 

a t  the highest temperatures, since there i s  some overlapping of the bands 

under these conditions. These data may be compared with the blackbody 

d is t r ibu t ion  shown i n  Fig. 1 t o  see the differences caused by the non- 

graybody behavior of water vapor under various conditions. 

COMPARISON WITH PREVIOUS WORK 

The data presented i n  Fig. 3 can be d i rec t ly  compared with those 

of Hottel,14 which a re  generally regarded as the best  t o t a l  emissivity 

data exzant up t o  now. 

shown i n  Figs. 11 and 12. 

conditions where Hottel has ac tua l  measurements the preserit vzlues of 

t o t a l  emissivity a re  higher than his .  

long pa ths , s ince  our calculations give an upper l i m i t  t o  the emissivity 

here. 

considerably higher than Hottel 's when the opt ica l  depth i s  s m a l l .  

these conditions our values should be exact, subject only t o  the high- 

frequency cutoff on l i m i t s  of integration and t o  uncertainties i n  the 

t rue  values of the .absorption coefficient of the pure rotation band, 

Replottings of our data and Hottel 's  data a re  

A t  large opt ical  depthsp we f ind tha t  under 

One expects t h i s  behzvior a t  

It i s  somewhat surprising that the  present values a re  a l so  

Under 

20 
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The f irst  e r ro r  actual ly  reduces our values, while the second should 

not cause more than a 10 per cent overestimation i n  the worst case. 

There are several  possible causes for  the disagreement, which vaires 

from a fac tor  of 2.4 a t  5W°K t o  a factor of 1.5 a t  2200OK. 

F i r s t ,  we note tha t  while the data we show here were obtained 

spectrally,  with separate instrumental response calibrations a t  a l l  

observed frequencies , Hottel 's were t o t a l  measurements and h i s  calibra- 

t i o n  was affected by exposing h is  detector t o  blackbody radiation of a l l  

frequencies a t  once. Variations i n  the spec t ra l  response of Hottel 's 

detector, not shown by h i s  calibration, may be responsible f o r  the 

differences between our data and his .  In  a t  l ea s t  one series of 

experiments15 he exposed h i s  detector t o  blackbody radiation a t  temper- 

atures of 660 and 1270°K, and found only a three per cent difference i n  

the cal ibrat ion constant, indicating tha t  the  response of h i s  detector 

was most l i ke ly  reasonably f la t  between 1000 and 5000 em-'. 

much emission a t  short  paths (particularly a t  low temperatures) occurs 

However, 

below 1000 em-'. 

A second possible source of error i s  i n  temperature measurement. 

If our measured temperatures were consistently low , or Hottel ' s  consistently 

high, then the emissivit ies derived from these data and the measured gaseous 

emission would d i f f e r  i n  the manner shown. Hottel made h is  measurements 

of temperature with thermocouples and by sodium-D l i n e  reversal. H i s  

thermocouple traverses show l i t t l e  temperature variations along the 

l i n e  of s ight ,  and seem t o  have taken account of thermocouple radiation. 

16 
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W e  have not enoilgh information t o  judge the sodilxm measw-ements. In our 

t 

system, we have measured the tenperatwe by means of an infrared 

absorption-emission technique -17 We f ind tha t  the temperatures we measure 

a re  very close t o  those measured i n  the same rocket. motor by Griggs using 

a sodium reversal  technique 018 Furthermore, the integrated band in tens i t ies  

derived from our measurements (at  high temperatures ) provide an independent 

check on the data. We f ind close agreement with the data of other invest i -  

gators , which could ~ o t  occzr i f  our temperature measurements contained a 

consistent error .  

Atmospheric absorption provides a t h i rd  source of error .  It i s  well 

known tha t  radiation from a gas, which consists of discrete  l ines ,  is more 

strongly absorbed by a cool layer of the same gas, which absorbs i n  mostly 

the same l ines ,  than is  radiation from a spectral ly  continuous source. 

Both Hottel  and ourselves recognizedthe importance of absorption and took 

pains t o  minimize it. In our case, the re la t ive  absorption a t  sny wave- 

number was never greater than 5 per  cent, and the absorption a t  most 

frequencies i s  t r u l y  negligible. Furthermore, our method of calibration 

t w d s  t o  minimize t h i s  difference. 

experiments were performed w i t h  the presence of absorbing layers between 

If i n  sp i t e  of h i s  precautions Hottel 's  

the emitting gas and h i s  detectors, then h i s  measured emissivit ies would 

be low. 

thin-gas data more than the optically thick data, and would be especially 

(An absorbing layer  of constant op t ica l  depth would a f fec t  h i s  

important t o  the very intense rotational band.) 

W e  have not been able t o  pinpoint the source of the difference 
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between Hottells  opt ical ly  th in  50 emissivit ies and those we have 

calculated from our spectral  measurements. Since our data have a bu i l t -  

i n  independent check i n  t h a t  integrated band in tens i t ies  can be compared 

with those of other investigators, we f e e l  that our data i n  t h i s  region 

are more l i ke ly  t o  be correct.  

the  disagreement extends t o  larger  optical  depths, because the present 

calculations provide only an upper l i m i t  t o  the emissivity under those 

conditions. 

A t  the present time we cannot say whether 

SUMMARY 

The t o t a l  emissivity of gases for very th in  opt ica l  paths can be 

calculated exactly and straightforwardly from measured gas spec t ra l  

emissivity data provided t h a t  t h e  observed gas i s  itself opt ical ly  thin.  

A n  absolute upper l i m i t  t o  the t o t a l  and spectral  emissivity can be 

calculated by use of the thin-gas spectral  absorption coefficients and 

Beer's L a w .  

spec t ra l  emissivit ies s a t i s f y  the requirement of op t ica l  thirness  a t  high 

temperatures, except f o r  the pure r o t a t i o m l  spectrum. Values of the 

spec t ra l  absorption coefficient frequency-averaged over a small wave- 

The experimental data of Ferriso and LLtdwig f o r  water vapor 

number in te rva l  can be derived from t h e i r  low-temperature data f o r  the 

2.7- and 6.3-p bands. 

coefficients a re  calculated from approximate theore t ica l  expressions 

which give good qual i ta t ive agreemert with the measured data. 

and supplemented data of Ferriso and Ludwig have been employed i n  the 

The rotational band frequency-averaged absorption 

The corrected 
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Beer's Law re la t ion  t o  obtain upper-limit spec t ra l  emission fo r  K O  a t  

temperatures from 500' t o  22OO0K, and opt ica l  depths from 0.1 t o  10,000 

cm-atm. The data thus generated a re  integrated over the wavenumber range 

from 0 t o  11,000 cm-l t o  obtain t o t a l  emissivit ies of %O f o r  the various 

conditions. Comparison of these data with those of Hottel shows that the 

t o t a l  emissivit ies derived from Ferris0 and Ludwig's data a re  considerably 

higher than Hottel 's  when the gas i s  very thin,  where the present calculation 

i s  exact. We believe tha t  the thin-gas daka presented here a re  correct, 

but have not been able t o  ascer ta in  precisely the cause of the discrepancy 

between our data and Hottel 's. 
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